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Abstract 

An analysis is presented for the Tammes problem: 
how must n points be distributed on the surface of 
a sphere in order that the minimum angular distance 
between any two of the points be a maximum? With 
the analogy of the capsid structure of small 'spherical' 
viruses, locally extremal arrangements are construc- 
ted in tetrahedral, octahedral and icosahedral sym- 
metry. Thirty arrangements defined by four packing 
sequences are investigated. By the applied construc- 
tion process, novel locally extremal configurations 
for n = 78, 96, 108, 144, 150, 192, 198, 270, 360, 372, 
480, 492 and improvable configurations for n = 114, 
282 are obtained. A table is given of the investigated 
arrangements; most of them are putative solutions of 
the Tammes problem. 
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Introduction 

Consider the problem of the closest packing of n 
equal non-intersecting spheres on the spherical sur- 
face investigated by Mackay, Finney & Gotoh (1977). 

This 'hard-sphere' problem, mentioned as the Fejes 
problem (Fejes T6th, 1972) by Mackay, Finney & 
Gotoh (1977) but better known as the Tammes prob- 
lem (Tammes, 1930; Fejes T6th, 1964), has several 
equivalent formulations. Melnyk, Knop & Smith 
(1977) enumerated the different formulations of this 
purely geometrical problem but presented also a phy- 
sical interpretation of it as an extreme case of finding 
equilibrium configuration where n points on the sur- 
face of a sphere repel each other according to the 
inverse power law. Namely, when the exponent of 
the power tends to infinity, the smallest distance 
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between the points becomes dominant in the potential 
energy and minimizing the potential energy becomes 
equivalent to maximizing the smallest distance. Thus, 
in the limit, the problem of equilibrium configuration 
is equivalent to the problem of densest packing of 
equal spheres (or circles or spherical caps) on the 
sphere. 

Here we will examine the Tammes problem in the 
form: How must n equal non-overlapping circles 
(spherical caps) be packed on the surface of a sphere 
so that the angular diameter d of the circles will be 
as great as possible? We chose this formulation since 
in this case it is easy to define the density and the 
graph of packing. 

The density D of packing is the ratio of the total 
area of the surface of the spherical caps to the surface 
area' of the sphere: D = ( n / 2 ) [ 1 - c o s ( d / 2 ) ] .  The 
graph of packing is defined so that the vertices of 
the graph are the centres of the spherical circles and 
the edges of the graph are the shorter arcs of great 
circles joining the centres of the touching spherical 
circles. Thus, all the edges of the graph of a packing 
of equal circles are of equal length, and the length 
of the edges in the graph is equal to the diameter of 
the spherical circles. 

The solution of the Tammes problem and also the 
extremal density of packing are known only for some 
values of n. For many values of n there are only 
estimations of the extremal density. Upper bounds 
can be given, for example, by Fejes T6th's (1972) and 
Robinson's (1961) formulae, but lower bounds can 
be most appropriately given by constructions. Many 
construction methods have been developed for pro- 
ducing dense packing of equal circles on the sphere 
as, for example, axially symmetric packing (Gold- 
berg, 1967), multi-branched helical packing (Szrkely, 
1974), multi-symmetric packing (Robinson, 1969), 
construction of new packing by moving the graph of 
an existing packing (Danzer, 1963), and packing by 
the above-mentioned repulsion-energy minimization 
(Clare & Kepert, 1986). 

The best packings in the literature, in general, have 
a moderate degree of symmetry or have no symmetry 
at all. This was also confirmed by a very recent paper 
of Clare & Kepert (1986). However, there are par- 
ticular values of n (n = 4, 6, 12, 24, 48, 120, 180) for 
which the proved or conjectured best packings, 
contrary to the general cases, have a high degree of 
symmetry (tetrahedral, octahedral, icosahedral). The 
aim of this paper is to try to extend the set of these 
particular cases by introducing packing sequences 
such that these particular packings are terms of the 
introduced sequences. 

In this paper the multi-symmetric packing is treated 
in which the arrangements of the circles have rota- 
tional symmetry of the regular tetrahedron, octahe- 
dron and icosahedron. Defining an infinite family of 
circle packings, we shall present locally extremal 

arrangements for n =78, 96, 108, 144, 150, 192, 198, 
270, 360, 372, 480, 492 and non-rigid packings for 
n = 114, 282, which configurations do not seem to 
have been considered previously. Our investigations 
have been inspired by the structure of virus coats 
(Caspar & Klug, 1962) and Robinson's (1969) pack- 
ing constructions. 

Regular triangular tessellations 

Consider the triangular surface lattices of 'spherical' 
viruses, and consider them not only on the icosahe- 
dron but also on the octahedron and tetrahedron. 
After Coxeter (1972), let us denote all of these regular 
tessellations by the symbol {3, q+}b,c, where the num- 
ber 3 means that the tessellation consists of equilateral 
triangles and the notation q+ refers to the fact that 
q or more than q (i.e. six) triangles meet at the vertices 
of the tessellation. The suffixes b, c denote the coordi- 
nation numbers of triangulation. 

Let us denote the number of the vertices of the 
tessellation {3, q+}b,c by V and the number of the 
vertices of the base polyhedron {3, q} by Vr. Using 
the relationships of § 10.3 of Coxeter's (1969) book, 
we can express the number of the vertices of the 
tessellation (with preservation of the vertices of the 
base polyhedron) in the form: 

V= T [ 2 q / ( 6 - q ) ] + 2 ,  

and the number of the vertices of the tessellation with 
removal of the vertices of the base polyhedron in the 
form: 

V - V r = ( T - 1 ) [ 2 q / ( 6 - q ) ] ,  

where T is the triangulation number: T = b 2 + bc + c 2 
and q = 3, 4, 5. These V and V -  V, numbers can be 
considered as those values of n for which rather dense 
packings are expected in tetrahedral, octahedral and 
icosahedral rotational symmetry, but not all of them 
lead to a local maximum. 

Robinson (1969) has constructed dense circle pack- 
ings in tetrahedral, octahedral and icosahedral sym- 
metry so that the part of the graph of the packing 
above a face of the polyhedron is the same in all three 
cases. The graphs of the circle packings obtained by 
him are rigid in the Danzerian sense (Danzer, 1963), 
which means that the edge length of the graph has a 
local maximum. Recently, Tarnai (1983) succeeded 
in applying Robinson's idea. Examining the arrange- 
ments constructed by Robinson (1969) and Tarnai 
(1983), one can ascertain a common property. 
Namely, for the tessellations b = c+ 1 or b = c + 2  
holds and the vertices of the polyhedron {3, q} do 
not belong to the graph. This observation suggested 
that we could produce packings with the same 
property. 

In a preliminary investigation (Tarnai, 1985) we 
analysed how Robinson's (1969) packings take shape 



614 M U L T I - S Y M M E T R I C  CLOSE P A C K I N G S  OF E Q U A L  SPHERES 

when circles are packed also at the vertices of  the 
base polyhedra  {3, q}. The results obtained were not 
as good as the original results, but were more or less 
acceptable except for the arrangements  in tetrahedral  
symmetry. So, al though we did not expect very good 
results we decided to produce packings of  this kind 
also. 

For the calculations we have worked out a pro- 
cedure which is based on the 'heat ing technique '  
(Tarnai & G~isp~ir, 1983) considering the graph as a 
spherical  bar  and joint  structure. 

Sequences of circle packings and new results 

The tessellations {3, q+}c+l.c and {3, q+}¢+2.c by 
removal and preservation of  the vertices of the regular 
polyhedra  {3, q} define four infinite sequences of  
circle packings for c = 1, 2 , . . . ,  where each term of 
a sequence can be defined for q = 3, 4, 5. In the case 
of preservation of  the vertices of  the regular polyhedra  
{3, q} we only investigated the circle packings for 
q = 4 and q = 5. We determined the first three terms 
of  the sequences of  the circle packings, so we investi- 
gated altogether 30 arrangements.  

The first sequence is defined with removal of  the 
vertices of  the base polyhedra  and b = c +  1. So, when 
c = 1 packings for n = 12, 24, 60 (Robinson,  1969) are 
obtained;  when c = 2  packings for n =36 ,  72, 180 
(Tarnai, 1983) are obtained;  and when c = 3 packings 
for n = 72, 144, 360 are obtained.  The subgraphs of 
these packings can be seen in Fig. 1 in a schematic 
form where (and similarly also in the for thcoming 
pictures) each great equilateral  triangle composed of 
dashed lines is a face of  the regular te t rahedron or 
octahedron or icosahedron.  

The second sequence is defined with removal of  
the vertices of  the base polyhedra  and b = c + 2. So, 
when c = 1 packings for n = 24, 48, 120 (Robinson,  
1969) are obtained;  when c = 2 packings for n = 54, 
108, 270 are obtained;  a n d w h e n  c = 3 packings for 
n = 96, 192, 480 are obtained.  The subgraphs of these 
packings can be seen in Fig. 2. 

The third sequence is defined with preservation of 
the vertices of  the base polyhedra  and b = c + 1. So, 
when c = 1 packings for n = 30, 72 (Tarnai, 1985) are 
obtained;  when c = 2  packings for n =78 ,  192 are 
obtained;  and when c = 3 packings for n = 150, 372 
are obtained.  The subgraphs of these packings can 
be seen in Fig. 3. 
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Fig. 2. Subgraph of the packing in system {3, q+}c+2.~ with removal 
of the vertices of the base polyhedron for q = 3, 4, 5 and (a) 
c = 1; (b) c = 2; (c) c = 3. 
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Fig. 1. Subgraph of the packing in system {3, q+} c+to~ with removal 
of the vertices of the base polyhedron for (a) q = 3, 4, 5 and 
c = 1 ;  (b) q = 3 ,  4, 5 and c = 2 ;  (c) q = 3  and c = 3 ;  (d) q = 4 ,  5 
and c = 3. 

\ \ 
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Fig. 3. Subgraph of the packing in system {3, q+}<+~,c with pre- 
servation of the vertices of the base polyhedron for (a) q = 4, 5 
and c = l ; ( b )  q = 4 , 5 a n d  c = 2 ; ( c )  q = 4 a n d  c = 3 ; ( d )  q = 5  
and c = 3. 
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/1 

12 
24 
30 
36 
48 
54 
6O 
72 
72 
72 
78 
96 

108 
114 
120 
132 
144 
150 
180 
192 
192 
198 
270 
282 
360 
372 
480 
492 

Tessellation 

{3, 3+}2.1 
{3, 4+}2.1 
{3, 4+}2,1 
{3, 3+}3. 2 
{3, 4+}3.1 
{3, 3+}4.2 
{3, 5+}2.1 
{3, 3+}4. 3 
{3, 4+}3, 2 
{3, 5+}2.1 
{3, 4+}3. 2 
{3, 3+}5.3 
{3, 4+}4. 2 
{3, 4+}4,2 
{3, 5+}3.1 
{3, 5+}3.1 
{3, 4+}4, 3 
{3, 4+}4.3 
{3, 5+}3,2 
{3, 4+}5. 3 
{3, 5+}3.2 
{3, 4+}5,3 
{3, 5+}4.2 
{3, 5+}4,2 
{3, 5+}4.3 
{3, 5+}4,3 
{3, 5+}5.3 
{3, 5+}5.3 

Table 1. Close packings of congruent spheres on a spherical surface 

Angles in the graph Upper bound 
Diameter d (°) of  maximum 

Subgraph (°) a fl Density D density 

Fig. l(a) 63.43494 0.89609 0.89609 
Fig. l(a) 43.69078 0.86170 0.86170 
Fig. 3(a) 37.47861 0.79515 0.86304 
Fig. l(b) 34.70342 85.22967 0.81914 0.86559 
Fig. 2(a) 30-76278 0.85964 0-87105 
Fig. 2(b) 28.27575 83-76753 0.81781 0.87349 
Fig. l(a) 26.82139 0.81801 0.87570 
Fig. l(c) 24.76706 93.05042 113.56839 0.83758 0.87943 
Fig. l(b) 24.85375 72.01475 0.84343 0.87943 
Fig. 3(a) 24.83975 0.84248 0.87943 
Fig. 3(b) 23.34706 99.41025 0.80666 0.88100 
Fig. 2(c) 21.08719 92-39056 92.39056 0.81043 0.88485 
Fig. 2(b) 20-20975 71.47703 0.83763 0.88686 
Fig. 4(b) 18.94569 99.30375 0.77727 0.88774 
Fig. 2(a) 19.32389 0.85109 0.88854 
Fig. 4(a) 18.36653 0.84593 0.88997 
Fig. l(d) 17.48031 76.21336 0.83609 0.89119 
Fig. 3(c) 17.10933 104.58036 0.83442 0.89174 
Fig. l(b) 15-81875 64.59911 0-85617 0.89400 
Fig. 2(c) 15-04103 76.00683 75.86661 0.82579 0.89472 
Fig. 3(b) 15-17867 75.78336 0-84095 0.89472 
Fig. 4(c) 14.60186 96-76233 75.36017 0-80265 0.89506 
Fig. 2(b) 12.93700 64.43083 0.85942 0.89800 
Fig. 4(b) 12-44139 75.79611 0.83022 0.89835 
Fig. l(d) 11.20247 66.32283 0-85945 0.90010 
Fig. 3(d) 10.92372 77.82400 81.65733 0.84448 0-90031 
Fig. 2(c) 9.69375 66.26633 66.23108 0.85822 0.90174 
Fig. 4(c) 9.46111 74.83931 66.10678 0-83799 0.90186 

* The packing is the same as that in {3, 3+}3.1, Fig. 2(a). 
t The packing is the same as that in {3, 4+}3.1, Fig. 4(a). 
* The packing due to Sz6kely (1974) is better. 
§ The packing in {3,4+}3.2, Fig. l(b), is better. 

Notes 

Robinson (1969) 
Robinson (1969)* 
Goldberg (1967) is better 
Clare & Kepert (1986) is better 
Robinson (1969) 
Sz6kely (1974)t 
Robinson (1969)~t 
{3,4+}3.2, Fig. l(b) is better 
Tarnai (1983) 
Mackay, Finney & Gotoh (1977)§ 
New result 
New result 
New result 
The packing is not rigid 
Robinson (1969) 
Tarnai (1985) 
New result 
New result 
Tamai (1983) 
{3, 5+}3.2, Fig. 3(b) is better 
New result 
New result 
New result 
The packing is not rigid 
New result 
New result 
New result 
New result 

The fourth sequence is defined with preservation 
of the vertices of the base polyhedra and b = c +  2. 
So, when c = 1 packings for n = 54, 132 (Tarnai, 1985) 
are obtained; when c = 2 packings for n = 114, 282 
are obtained; and when c = 3 packings for n = 198, 
492 are obtained. The subgraphs of these packings 
can be seen in Fig. 4. 

 .TVL.t. 7 / / 
(a)  (b) 

(c) 
Fig. 4. Subgraph of  the packing in system {3, q+}c+2,c with pre- 

servation of  the vertices of  the base polyhedron for q = 4, 5 and 
(a)  c =  1; (b)  c = 2 ;  (c) c = 3 .  

The investigated packing sequences in a multi- 
symmetric system incorporate some known arrange- 
ments. The numerical data of these known packings 
and of the newly discovered packings are collected 
in Table 1 whose entries are arranged with increasing 
n. Table 1 contains the values of the density D of the 
actual arrangements (which are lower bounds for 
the extremal density) and also the upper bounds for 
the extremal density calculated by formula (9.5) of 
Robinson (1961). In order to be able to reproduce 
and check the results easily, in Table 1 we have given 
one or two angles (o~,/3) of the graph where the 
determination of these angles would be a little 
difficult. These angles are marked in Figs. 1 to 4. (It 
should be noted, however, in order that the calcula- 
tion be correct, in general, a higher order of exactness 
is needed for the edge length d than for the angles 
c~,/3 in the graph.) 

Concluding remarks 

It is interesting to see that 72 equal circles (spheres) 
can be packed on a spherical surface in arrangements 
ditterent from each other in tetrahedral (Fig. l c), 
octahedral (Fig. lb)  and icosahedral (Fig. 3a) sym- 
metry with Danzerian rigid graphs (in each of the 
cases the density has a local maximum). Comparing 
the three cases, one ~an ascertain that the best result 
is obtained in octahedral symmetry. 
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Contrary to the case of n = 72, for n = 54 the same 
locally extremal packing is obtained with tetrahedral 
{3, 3+}4,2 and octahedral {3, 4q-}3,1 surface lattices. It 
should be noted that this packing also represents a 
four-branched spherical helix structure (Sz6kely, 
1974; Tarnai, 1985). 

The applied method did not result in Danzerian 
rigid packings for n = 114 and 282. The result for 
n = 114 is not of interest since the circle diameter for 
n = 114 is less than the circle diameter for n = 120. 
But, the arrangement of 282 circles is quite good, so 
it is worth improving it, by giving up the icosahedral 
symmetry. 

Terms of the packing sequences {3, q+}c÷~,c, 
{3, q+}c÷2,~ defined with removal of the vertices of 
the base polyhedra {3, q} present Danzerian rigid 
arrangements and quite large densities in all of the 
investigated cases. On the basis of the results obtained 
it is expected that Danzerian rigid packings will also 
be obtained in these sequences for values c > 3. 
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Abstract 

A theory of electron diffraction from a planar ideal 
crystal of arbitrary thickness is presented. It is based 
on Schr6dinger's equation. Both the relativistic cor- 
rections in energy and wavelength and the electron 
'absorption'  due to the presence of inelastic scattering 
may be incorporated as usual. This theory is construc- 
ted in an exact differential-equation approach known 
as rigorous coupled-wave analysis. This is an exact 
method of diffraction analysis that has been exten- 
sively tested for its numerical calculation scheme. The 
exact solution for electron wave amplitudes of all 
diffraction orders is formally presented in terms of a 
standard eigenvalue problem and explicitly expressed 
in matrix form. Numerical calculation can be imple- 
mented on digital computers in a straightforward 
manner. An approximate conservation law is given 
for the transmittance and reflectance, which are then 
the relevant dynamical quantities to be measured in 

0108-7673/87/050616-06501.50 

a realistic t ime-dependent diffraction process and to 
be calculated in this time-independent diffraction 
theory for comparison. Two derivations of the well 
known Bragg law are sketched. 

I. Introduction 

In theories of electron diffraction from a planar ideal 
crystal, as in all wave-motion problems, the wave field 
is usually expanded into certain elementary waves 
when a differential-equation approach is adopted. 
The amplitudes of the elementary-wave components 
are to be determined, exactly or approximately, by a 
wave equation and boundary conditions. A particular 
relativistically corrected form of Schr6dinger's wave 
equation is used when electron polarization may be 
ignored (Hirsch, Howie, Nicholson, Pashley & 
Whelan, 1977; Cowley, 1981). As for the wave 
expansion, there are three main types. One type is 
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